Intelligent Energy collaboration partner of GKN Aerospace in development of ground-breaking hydrogen propulsion system for aircraft

Published on Wed 27 January, 2021

  • GKN Aerospace leads £54M collaborative H2GEAR programme, to push hydrogen technology and accelerate aerospace decarbonisation to zero emissions
  • Public-private investment and collaboration aims to create more than 3,000 UK roles
  • Entry-into-service of hydrogen-powered aircraft could be as early as 2026
  • Intelligent Energy aims to make East Midlands a centre of UK fuel cell manufacturing with expanded presence
  • Project will put Intelligent Energy, GKN Aerospace and the programme partners at the forefront of the next generation of sustainable aircraft technology.

Intelligent Energy, the UK based fuel cell engineering company, has been selected to develop and manufacture its lightweight and compact fuel cells for a ground-breaking UK collaboration programme, H2GEAR. The programme will develop a hydrogen propulsion system for sub-regional aircraft, the first for lead partner GKN Aerospace. Hydrogen is expected to play a key role in the decarbonisation strategy of aviation as it can power aircraft efficiently, leaving water as the only by-product. H2GEAR puts GKN Aerospace, Intelligent Energy and their partners at the heart of the technology developments needed for the future of more sustainable aviation. The technology will first focus on significantly improving sub-regional aircraft hydrogen powered performance, in turn enabling applications on larger aircraft and longer journeys. The programme is supported by £27M of ATI funding, matched by GKN Aerospace, Intelligent Energy and the programme partners.

H2GEAR aims to develop a liquid hydrogen propulsion system for sub-regional aircraft that could be scaled up to larger aircraft. Liquid hydrogen is being converted to electricity within a fuel cell system. This electricity efficiently powers the aircraft, eliminating CO2 emissions. This would create a new generation of clean air travel, eliminating harmful CO2 emissions.

 H2GEAR will reinforce the UK’s position at the forefront of aerospace technology research and development. Intelligent Energy and GKN Aerospace will collaborate with Aeristech, Newcastle University, The University of Manchester and University of Birmingham throughout the programme, aiming to create more than 3,000 jobs in the next decade. The programme will be delivered from GKN Aerospace’s Global Technology Centre in Bristol, the company’s £32M brand-new collaborative space for research and development.

David Woolhouse, CEO at Intelligent Energy, said: “We have a very exciting programme of work over the next few years, including developing leading lightweight fuel cell modules for aerospace. This programme will see us develop the next generation of fuel cell technology and supports the growth of manufacturing right here in the East Midlands.  We are planning to increase our manufacturing capability with a new state-of-the-art Gigafactory facility in the region, positioning the East Midlands as a centre of hydrogen fuel cell manufacturing in the UK. The entry-into-service of the first hydrogen-powered aircraft could be as early as 2026.”

Russ Dunn, Chief Technology Officer for GKN Aerospace, said: “Hydrogen-powered aircraft offer a clear route to keep the world connected, with dramatically cleaner skies. The UK is at the forefront of this technology, and the H2GEAR project is an example of industry, academia and Government collaboration at its best. Working with our partners, and made possible by Government investment, GKN Aerospace will develop and industrialise the breakthrough technology to fly aircraft with zero CO2 emissions by the mid-2020s. This will not only create thousands of jobs, but it will keep the UK at the forefront of the next generation of cleaner air travel for decades to come.”

ENDS

Notes to Editors

GKN Aerospace is the world’s leading multi-technology tier 1 aerospace supplier. As a global company serving the world’s leading aircraft manufacturers, GKN Aerospace develops, builds and supplies an extensive range of advanced aerospace systems, components and technologies– for use in aircraft ranging from helicopters and business jets to the most used single aisle aircraft and the largest passenger planes in the world. Lightweight composites, additive manufacturing, innovative engine systems and smart transparencies help to reduce emissions and weight on the aircraft and enhance passenger comfort. GKN Aerospace is market leading in aerostructures, engine systems, transparencies and wiring systems and operates in 14 countries at 48 manufacturing locations employing approximately 17,000 people.

Media Enquiries Marianne Mulder, Digital Communications and Media Manager, GKN Aerospace Mobile: +31 6 51311217. Email: marianne.mulder@fokker.com

Intelligent Energy (IE) will create new and innovative IP, know-how, skills and capabilities in the field of lightweighted fuel-cell stacks (utilising new materials, coatings and processes) and systems configured for zero emission flight propulsion requirements. These will be exploited through development by IE, and IE's supply chain, of new fuel cell products and services in aviation application.

Media Enquiries: Debbie Hughes, Head of Communications and PR, Mobile: +447885 879741, Email: debbie.hughes@intelligent-energy.com 

Aeristech was founded in 2006 and is a leading designer of advanced electric motor and control systems, winning the Queen's Award for Enterprise: Innovation in 2020. Aeristech’s technology enables it to manufacture the world’s fastest accelerating and most power dense permanent magnet variable speed electric motors, which are ideal for applications where efficiency, power density and speed are essential. Its Leamington Spa headquarters feature laboratories, pilot production and test facilities.Media Enquiries: Hoda Awad – Madano, Aeristech@madano.com, +44  20 7593 4014

Newcastle University As a member of the Russell Group of research-intensive universities in the UK, Newcastle has a world-class reputation for research excellence in the fields of medicine, science and engineering, social sciences and the humanities. Its academics are sharply focused on responding to the major challenges facing society today. Our research and teaching are world-leading in areas as diverse as health, culture, technology and the environment. The Research Excellence Framework 2014 (REF) placed Newcastle University 16th in the UK for Research Power and the vast majority of our research was assessed to be world-leading or internationally excellent.

Newcastle University is committed to providing its students with excellent, research-led teaching delivered by dedicated and passionate teachers. This is reaffirmed by achieving the best possible outcome - a Gold Award - in the Teaching Excellence Framework (TEF). Media Enquiries: Helen Rae Helen.Rae@newcastle.ac.uk

The University of Manchester has a worldwide reputation for pioneering research in electrical networks and electrification of transport. The ambition of this project is to develop cryogenic technologies to create new electric drive concepts enabling power dense, highly efficient zero emission propulsion for aerospace. Media Enquiries: Sandy Smith Sandy.Smith@manchester.ac.uk

University of Birmingham The Centre for Fuel Cell and Hydrogen Research at the University of Birmingham will work on the future aviation fuel cell stack concept. The future stack will be based on the Novel Intermediate Temperature Polymer Electrolyte Fuel Cell (IT-PEFC) technology being developed at University of Birmingham. The IT-PEFC stack will offer an increase in power density, improved performance and simplified balance of plant.

The School of Chemical Engineering and the University of Birmingham hosts the UK’s leading Centre for Fuel Cell and Hydrogen Research. The centre is an integral part of the Birmingham Energy Institute and Energy Research Accelerator. Throughout the last decade, the significant contribution of the Centre towards the scientific and technology advancements in fuel cell and hydrogen research has been demonstrated through over 200 peer reviewed publications, and many contributions to international conferences. More than 50 highly trained graduates from the Centre have moved on to work in the field with industrial and academic institutions. Media Enquiries Ahmad El-Kharouf  A.El-kharouf@bham.ac.uk